An Artificial Neural Network Classification Approach for Improving Accuracy of Customer Identification in E-commerce
نویسندگان
چکیده
With the advancesin Web-based oriented technologies, experts are able to capture user activities on the Web. Users’ Web browsing behavior is used for user identification. Identifying users during their activities is extremely important in electronic commerce (e-Commerce)as it has the potential to prevent illegal transactions or activities particularly for users who enter the system through the use of unknown methods.In addition, customer behavioral pattern identification provides a wide spectrum of applications such as personalized Web pages, product recommendations and present advertisements. In this research, a framework for users’ behavioral profiling formation is presented and customer behavioral patternsare used for customer identification in the e-Commerce environment. Based on activity control, policies such as user restriction or blockingcan be applied.The neural network classification and the measure of similarity among behavioral patterns are two approaches applied in this research. The results of multi-layer perceptron with a back propagation learning algorithm indicate that there is less error and up to 15.12% more accuracy on average.The results imply that the accuracy of the neural network approach in customer pattern behavior recognition increases when the number of customers grows.In contrast, the accuracy of the similarity of pattern method decreases.
منابع مشابه
Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملClassification of Iranian traditional musical modes (DASTGÄH) with artificial neural network
The concept of Iranian traditional musical modes, namely DASTGÄH, is the basis for the traditional music system. The concept introduces seven DASTGÄHs. It is not an easy process to distinguish these modes and such practice is commonly performed by an experienced person in this field. Apparently, applying artificial intelligence to do such classification requires a combination of the basic infor...
متن کاملA Reliability Approach on Redesigning the Warehouses in Supply Chain with Uncertain Parameters via Integrated Monte Carlo Simulation and Tuned Artificial Neural Network
In this paper, a reliability approach on reconfiguration decisions in a supply chain network is studied based on coupling the simulation concepts and artificial neural network. In other words, due to the limited budget for warehouse relocation in a supply chain, the failure probability is assessed for determining the robust decision for future supply chain configuration. Traditional solving ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014